Biosynthesis of IONPs:
[1]. Crespo, K. A., Baronetti, J. L., Quinteros, M. A., Páez, P. L., & Paraje, M. G. (2017). Intra- and
Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with
Anticoagulant Activity. Pharmaceutical research, 34(3), 591–598.
https://doi.org/10.1007/s11095-016-2084-0
[2]. Jacinto, M. J., Silva, V. C., Valladão, D. M. S., & Souto, R. S. (2021). Biosynthesis of magnetic iron
oxide
nanoparticles: a review. Biotechnology letters, 43(1), 1–12.
https://doi.org/10.1007/s10529-020-03047-0
[3]. Fatemi, M., Mollania, N., Momeni-Moghaddam, M., & Sadeghifar, F. (2018). Extracellular biosynthesis of
magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity
analysis on MCF-7 and 3T3 cell lines. Journal of biotechnology, 270, 1–11.
https://doi.org/10.1016/j.jbiotec.2018.01.021
Nanoparticle Separation:
[4]. Muraoka, S., Lin, W., Chen, M., Hersh, S. W., Emili, A., Xia, W., & Ikezu, T. (2020). Assessment of
separation methods for extracellular vesicles from human and mouse brain tissues and human cerebrospinal
fluids. Methods (San Diego, Calif.), 177, 35–49.
https://doi.org/10.1016/j.ymeth.2020.02.002
[5]. Sweeney, S. F., Woehrle, G. H., & Hutchison, J. E. (2006). Rapid purification and size separation of gold
nanoparticles via diafiltration. Journal of the American Chemical Society, 128(10), 3190–3197.
https://doi.org/10.1021/ja0558241
[6]. Leong, S. S., Ahmad, Z., Low, S. C., Camacho, J., Faraudo, J., & Lim, J. (2020). Unified View of Magnetic
Nanoparticle Separation under Magnetophoresis. Langmuir : the ACS journal of surfaces and colloids, 36(28),
8033–8055.
https://doi.org/10.1021/acs.langmuir.0c00839
[7]. Tian, X., Ruan, L., Zhou, S., Wu, L., Cao, J., Qi, X., Zhang, X., & Shen, S. (2022). Appropriate Size of
Fe3O4 Nanoparticles for Cancer Therapy by Ferroptosis. ACS applied bio materials, 5(4), 1692–1699.
https://doi.org/10.1021/acsabm.2c00068
Vector Design and Bacteria Strain Selection for Protein Expression:
[8]. Ahmadzadeh, M., Farshdari, F., Nematollahi, L., Behdani, M., & Mohit, E. (2020). Anti-HER2 scFv
Expression
in Escherichia coli SHuffle®T7 Express Cells: Effects on Solubility and Biological Activity. Molecular
biotechnology, 62(1), 18–30.
https://doi.org/10.1007/s12033-019-00221-2
[9]. Braakman, I., & Bulleid, N. J. (2011). Protein folding and modification in the mammalian endoplasmic
reticulum. Annual review of biochemistry, 80, 71–99.
https://doi.org/10.1146/annurev-biochem-062209-093836
[10]. Rashid M. H. (2022). Full-length recombinant antibodies from Escherichia coli: production,
characterization,
effector function (Fc) engineering, and clinical evaluation. mAbs, 14(1), 2111748.
https://doi.org/10.1080/19420862.2022.2111748
[11]. Robinson, M. P., Ke, N., Lobstein, J., Peterson, C., Szkodny, A., Mansell, T. J., Tuckey, C., Riggs, P.
D.,
Colussi, P. A., Noren, C. J., Taron, C. H., DeLisa, M. P., & Berkmen, M. (2015). Efficient expression of
full-length antibodies in the cytoplasm of engineered bacteria. Nature communications, 6, 8072.
https://doi.org/10.1038/ncomms9072
[12]. Schöttler, S., Becker, G., Winzen, S., Steinbach, T., Mohr, K., Landfester, K., Mailänder, V., & Wurm,
F. R.
(2016). Protein adsorption is required for stealth effect of poly(ethylene glycol)- and
poly(phosphoester)-coated nanocarriers. Nature nanotechnology, 11(4), 372–377.
https://doi.org/10.1038/nnano.2015.330
Application of IONPs:
[13]. Omura T. (1998). Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps
of
protein import into mitochondria. Journal of biochemistry, 123(6), 1010–1016.
https://doi.org/10.1093/oxfordjournals.jbchem.a022036
[14]. Mout, R., Moyano, D. F., Rana, S., & Rotello, V. M. (2012). Surface functionalization of nanoparticles
for
nanomedicine. Chemical Society reviews, 41(7), 2539–2544.
https://doi.org/10.1039/c2cs15294k
[15]. Nadeem, M., Khan, R., Shah, N., Bangash, I. R., Abbasi, B. H., Hano, C., Liu, C., Ullah, S., Hashmi, S.
S.,
Nadhman, A., & Celli, J. (2021). A Review of Microbial Mediated Iron Nanoparticles (IONPs) and Its
Biomedical Applications. Nanomaterials (Basel, Switzerland), 12(1), 130.
https://doi.org/10.3390/nano12010130
[16]. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis,
characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, science and
applications, 9, 49–67.
https://doi.org/10.2147/NSA.S99986
NHS-PEG-Maleimide Linkage:
[17]. Zhou, H., Fan, Z., Lemons, P. K., & Cheng, H. (2016). A Facile Approach to Functionalize Cell
Membrane-Coated Nanoparticles. Theranostics, 6(7), 1012–1022.
https://doi.org/10.7150/thno.15095
EDC/NHS Linkage:
[18]. Saei, A., Asfia, S., Kouchakzadeh, H., & Rahmandoust, M. (2020). Antibody-modified magnetic
nanoparticles as
specific high-efficient cell-separation agents. Journal of biomedical materials research. Part B, Applied
biomaterials, 108(6), 2633–2642.
https://doi.org/10.1002/jbm.b.34595
[19]. Hu, F., Chen, K., Xu, H., & Gu, H. (2018). Design and preparation of bi-functionalized short-chain
modified
zwitterionic nanoparticles. Acta biomaterialia, 72, 239–247.
https://doi.org/10.1016/j.actbio.2018.03.038
IONPs Antibody Conjugation Method beyond EDC/NHS and NHS-PEG-Maleimide:
[20]. Lee, C., & Kang, S. (2021). Development of HER2-Targeting-Ligand-Modified Albumin Nanoparticles Based on
the
SpyTag/SpyCatcher System for Photothermal Therapy. Biomacromolecules, 22(6), 2649–2658.
https://doi.org/10.1021/acs.biomac.1c00336
[21]. D'Agata, R., Palladino, P., & Spoto, G. (2017). Streptavidin-coated gold nanoparticles: critical role of
oligonucleotides on stability and fractal aggregation. Beilstein journal of nanotechnology, 8, 1–11.
https://doi.org/10.3762/bjnano.8.1
[22]. Ren, W. X., Han, J., Uhm, S., Jang, Y. J., Kang, C., Kim, J. H., & Kim, J. S. (2015). Recent development
of
biotin conjugation in biological imaging, sensing, and target delivery. Chemical communications (Cambridge,
England), 51(52), 10403–10418.
https://doi.org/10.1039/c5cc03075g
[23]. Hersch, N., Wolters, B., Ungvari, Z., Gautam, T., Deshpande, D., Merkel, R., Csiszar, A., Hoffmann, B.,
&
Csiszár, A. (2016). Biotin-conjugated fusogenic liposomes for high-quality cell purification. Journal of
biomaterials applications, 30(6), 846–856.
https://doi.org/10.1177/0885328215603026
Targeting of IONPs:
[24]. Korangath, P., Barnett, J. D., Sharma, A., Henderson, E. T., Stewart, J., Yu, S. H., Kandala, S. K.,
Yang,
C. T., Caserto, J. S., Hedayati, M., Armstrong, T. D., Jaffee, E., Gruettner, C., Zhou, X. C., Fu, W., Hu,
C., Sukumar, S., Simons, B. W., & Ivkov, R. (2020). Nanoparticle interactions with immune cells dominate
tumor retention and induce T cell-mediated tumor suppression in models of breast cancer. Science advances,
6(13), eaay1601.
https://doi.org/10.1126/sciadv.aay1601
[25]. Juan, A., Cimas, F. J., Bravo, I., Pandiella, A., Ocaña, A., & Alonso-Moreno, C. (2020). Antibody
Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. International journal of molecular
sciences, 21(17), 6018.
https://doi.org/10.3390/ijms21176018
[26]. Toporkiewicz, M., Meissner, J., Matusewicz, L., Czogalla, A., & Sikorski, A. F. (2015). Toward a magic
or
imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges.
International journal of nanomedicine, 10, 1399–1414.
[27]. Chen, H., Wang, L., Yu, Q., Qian, W., Tiwari, D., Yi, H., Wang, A. Y., Huang, J., Yang, L., & Mao, H.
(2013). Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for
targeting and magnetic resonance imaging of breast cancer. International journal of nanomedicine, 8,
3781–3794.
https://doi.org/10.2147/IJN.S49069
Antibody Affinity Assessment:
[28]. Ren, W. X., Han, J., Uhm, S., Jang, Y. J., Kang, C., Kim, J. H., & Kim, J. S. (2015). Recent development
of
biotin conjugation in biological imaging, sensing, and target delivery. Chemical communications (Cambridge,
England), 51(52), 10403–10418.
https://doi.org/10.1039/c5cc03075g
Drug Delivery:
[29]. Chen, H., Wang, L., Yu, Q., Qian, W., Tiwari, D., Yi, H., Wang, A. Y., Huang, J., Yang, L., & Mao, H.
(2013). Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for
targeting and magnetic resonance imaging of breast cancer. International journal of nanomedicine, 8,
3781–3794.
https://doi.org/10.2147/IJN.S49069
[30]. Kovach, A. K., Gambino, J. M., Nguyen, V., Nelson, Z., Szasz, T., Liao, J., Williams, L., Bulla, S., &
Prabhu, R. (2016). Prospective Preliminary In Vitro Investigation of a Magnetic Iron Oxide Nanoparticle
Conjugated with Ligand CD80 and VEGF Antibody As a Targeted Drug Delivery System for the Induction of Cell
Death in Rodent Osteosarcoma Cells. BioResearch open access, 5(1), 299–307.
https://doi.org/10.1089/biores.2016.0028