1. Claassens N, Sousa D, dos Santos V, et al. Harnessing the power of microbial autotrophy. Nat Rev Microbiol.
2016, 692–706.
2. Smith TP, Thomas TJH, García-Carreras B, et al. Community-level respiration of prokaryotic microbes may rise
with global warming. Nat Commun. 2019 Nov 12;10(1):5124.
3. Linger Jeffrey G, Ford Leah R, Kavita R, et al. Development of Clostridium tyrobutyricum as a microbial cell
factory for the production of fuel and chemical intermediates from lignocellulosic feedstocks. Front Energy Res.
2020, 8.
4. Liu J, Yang Z, Yang L, et al. Advances in the development of Clostridium tyrobutyricum cell factories driven
by synthetic biotechnology. Synthetic Biol J.
2022,
3(6): 1174-1200.
5. Bogorad I, Lin TS, Liao J. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature.
2013, 502: 693–697.
6. Zheng Y, Yuan Q, Luo H, et al. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate)
production from low cost carbon sources. Bioengineered. 2018 Jan 1;9(1):209-213.
7. Yu T, Liu Q, Wang X, et al. Metabolic reconfiguration enables synthetic reductive metabolism in yeast. Nat
Metab. 2022, 4:1551–1559.
8. Miyoshi K, Kawai R, Niide T, et al. Functional evaluation of non-oxidative glycolysis in Escherichia coli in
the stationary phase under microaerobic conditions. J Biosci Bioeng. 2023 Apr;135(4):291-297.
9. Wu C, Lo J, Urban C, et al. A synthetic acetyl-coa bi-cycle synergizes the Wood-Ljungdahl pathway for
efficient carbon conversion in syngas fermentation. 2020.
https://assets.researchsquare.com/files/rs-85001/v1_covered.pdf?c=1631843435