Mathematical modeling played an essential role in understanding and optimizing our project. It allowed us to investigate aspects of the project that could not be determined through experimentation, such as the volume of blood required for the microfluidic chip. Using variables for the unknown quantities, we could get an equation to calculate the volume of blood needed.
Modeling also allowed us to make predictions regarding the kinetics of the aptamer and cDNA binding using simple formulas. These predictions were cross-validated with our wet lab data.
Additionally, we analyzed the five putative biomarkers central to our project. We used Bayes’ Theorem to find the correlation factor between each biomarker and MDD, as well as other diseases where they show upregulation or downregulation. This analysis gave us a Bayesian network with probabilities.
We are developing additional models, such as a feasibility/reliability model, which strengthens our purpose of choosing five biomarkers instead of one.
Being a heterogeneous disorder, MDD is influenced by a variety of factors. Therefore, a single biomarker may not be the only factor causing MDD or even provide us with an accurate indication of whether or not a person has MDD. So, to bring high sensitivity and reliability to MDD diagnosis, our microfluidic chip employs 5 different putative biomarkers. Thus, to understand the significance and relevance of our biomarkers to MDD and its correlation with other diseases and validate our choice, we use the Bayesian network for biomarker analysis.
The Network for Biomarker Analysis
All the values are represented in percentage.
To prove that the biomarker level indicated MDD itself and not any other
diseases, we did a Bayesian Analysis of all the diseases associated with
each biomarker.
For this, we used Bayes’ theorem of conditional probability:
Where,
Please click on the different buttons to get a Correlation factor tables for each biomarker
Tabulated Bayesian probabilities value for miRNA 132
Diseases | Bayesian probability |
---|---|
MDD | .3.384 [1] |
Inflammatory Bowel Disease | 0.1606 [2] |
Osteoarthritis | 2.624 [3] |
Type 2 Diabetes | 5 [4] |
Hepatic steatosis | 18.5 [5] |
Aortic Atherosclerosis | 6.57 [6] |
Brain Ischeima | 0.173 [7] |
Periodontal disease | 9.5 [8] |
Alzheimer’s | 0.5 [9] |
Degenerative Disc Disease | 15 [10] |
Tabulated Bayesian probabilities value for miRNA 124
Diseases | Correlation factor |
---|---|
MDD | 6.0 [11] |
Parkinson's Disease | 0.0335 [12] |
Hepatic Cancer | 0.00465 [13] |
Rheumatoid Arthritis | 0.12 [14] |
Myocardial Infarction | 3.325 [15] |
Epilepsy | 0.35 [16] |
Glioblastoma Multiforme | 0.0016 [17] |
Huntington's | 0.0065 [18] |
Ovarian Cancer | 0.006 [19] |
Alzheimer’s | 1.95 [20] |
Using the study of the Bayesian network and the correlation factor, we were able to choose the most suitable set of biomarkers for the diagnosis of MDD. Despite the fact that several biomarkers are linked to various forms of disease, our extensive literature review suggests that people with MDD are most impacted by the overexpression of miRNA 124, 132, cortisol and the downregulation of serotonin and gs alpha protein. This supported our prediction that all five biomarkers together impacted patients with MDD and the bayesian network was crucial in the selection of these biomarkers.
We are interested in two reactions that are taking place in our wet lab: one with FRET aptamer + cDNA and then the Aptasensor with the Biomarker. So here we have a model showing the chemical kinetics for those two reactions and verifying the results that we are getting from Wetlab.
1) Aptamer + cDNA → Aptasensor
OASYS being a diagnostic aid for MDD, works by utilizing a small sample of blood to detect biomarker levels. Since iGEM protocols do not allow conducting experiments with living samples, we performed calculations to quantify the minimum blood amount required by our tool for testing.
We have used variables in place of quantities that are not yet known or established. Later when accurate values are available, we can put them in place of the variables to obtain objective results. Below, we have attempted to explain these calculations using flowcharts and mathematical equations.
The variables we have considered are as follows-:
Through the above shown calculations we got the following expression-:
This gives us an approximate range of the amount of blood that our chip will require for testing. Due to the necessary restrictions of iGEM, we could not do real-world testing using blood samples. Once we have the needful permissions and licenses to perform trials, we can get accurate values to be put in this equation. That would ultimately give us tangible results for the minimum amount of blood required by the kit.
Our project involves a system comprising five different components working in parallel to quantify biomarkers for diagnosing clinical depression and assessing its severity.
The precision of the Bayesian model can be improved further when we get the correlation factors between the biomarkers and respective diseases.
Also by getting threshold values for our chosen biomarkers, we can accurately predict the blood volume sample required for testing.
Basically, our system can be considered as a structure, with each biomarker-quantifier complex serving as a separate component.
To assess the reliability of our system, we can leverage the functioning probability of each individual component. These values can be incorporated into the following equation which will give an idea of the authenticity of our model.
1. Fang, Y., Qiu, Q., Zhang, S., Sun, L., Li, G., Xiao, S., & Li, X. (2018, February 1). Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. Journal of Affective Disorders; Elsevier BV.
https://doi.org/10.1016/j.jad.2017.11.090
2. Maharshak, N., Shenhar-Tsarfaty, S., Aroyo, N., Orpaz, N., Guberman, I., Canaani, J., Halpern, Z., Dotan, I., Berliner, S., & Soreq, H. (2013). MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflammatory Bowel Diseases, 19(7), 1346–1353.
https://doi.org/10.1097/mib.0b013e318281f47d
3. Murata, K., Yokota, H., Tanida, S., Ishikawa, M., Nishitani, K., Ito, H., & Nakamura, T. (2010, January 1). Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Research & Therapy; BioMed Central.
https://doi.org/10.1186/ar3013
4. Eliasson, L., & Esguerra, J. L. (2020, April 13). MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes. Diabetes; American Diabetes Association.
https://doi.org/10.2337/dbi19-0016
5. Hanin, G., Yayon, N., Tzur, Y., Haviv, R., Bennett, E. R., Udi, S., Krishnamoorthy, Y. R., Kotsiliti, E., Zangen, R., Efron, B., Tam, J., Pappo, O., Shteyer, E., Pikarsky, E., Heikenwalder, M., Greenberg, D. S., & Soreq, H. (2018). miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut, 67(6), 1124–1134.
https://doi.org/10.1136/gutjnl-2016-312869
6. Šatrauskienė, A., Navickas, R., Laucevičius, A., Krilavičius, T., Užupytė, R., Zdanytė, M., Ryliškytė, L., Jucevičienė, A., & Holvoet, P. (2021). Mir-1, miR-122, miR-132, and miR-133 are related to subclinical aortic atherosclerosis associated with metabolic syndrome. International Journal of Environmental Research and Public Health, 18(4), 1483.
https://doi.org/10.3390/ijerph18041483
7. Bormann, D., Stojanovic, T., Cicvaric, A., Schuld, G. J., Cabatic, M., Ankersmit, H. J., & Monje, F. J. (2021). MiRNA-132/212 gene-deletion aggravates the effect of oxygen-glucose deprivation on synaptic functions in the female mouse hippocampus. Cells (Basel, Switzerland), 10(7), 1709.
https://doi.org/10.3390/cells10071709
8. Xu, Y., Ren, C., Zhao, X., Wang, W., & Zhang, N. (2019). microRNA-132 inhibits osteogenic differentiation of periodontal ligament stem cells via GDF5 and the NF-κB signaling pathway. Pathology, Research and Practice, 215(12), 152722.
https://doi.org/10.1016/j.prp.2019.152722
9. Fu, X., Liu, J., Xie, J., Chen, G., Zhang, H., Meng, F., Wu, M., Li, Q., Liu, Y., Wang, W., Dai, J., Wang, D., Zhao, D., Li, C., & Wang, X. (2022). Identification of potential therapeutic and diagnostic characteristics of Alzheimer disease by targeting the miR-132-3p/FOXO3a-PPM1F axis in APP/PS1 mice. Brain Research, 1790(147983), 147983.
https://doi.org/10.1016/j.brainres.2022.147983
10. Liu, W., Xia, P., Feng, J., Kang, L., Mi, H., Wang, K., Song, Y., Li, S., Wu, X., Yang, S., & Yang, C. (2017, October 1). MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Experimental Cell Research; Elsevier BV.
https://doi.org/10.1016/j.yexcr.2017.08.011
11. Bains, N., & Abdijadid, S. (2023). Major Depressive Disorder. StatPearls Publishing.
https://doi.org/10.1016/j.yexcr.2017.08.011
12. Verma, A. K., Raj, J., Sharma, V., Singh, T. B., Srivastava, S., & Srivastava, R. (2017). Epidemiology and associated risk factors of Parkinson’s disease among the north Indian population. Clinical Epidemiology and Global Health, 5(1), 8–13.
https://doi.org/10.1016/j.cegh.2016.07.003
13. McGlynn, K. A., Petrick, J. L., & El-Serag, H. B. (2021). Epidemiology of hepatocellular carcinoma. Hepatology (Baltimore, Md.), 73(S1), 4–13.
https://doi.org/10.1002/hep.31288
14. UpToDate. (n.d.). Uptodate.com. Retrieved October 12, 2023, from
https://www.uptodate.com/contents/epidemiology-of-risk-factors-for-and-possible-causes-of-rheumatoid-arthritis
15. Salari, N., Morddarvanjoghi, F., Abdolmaleki, A., Rasoulpoor, S., Khaleghi, A. A., Hezarkhani, L. A., Shohaimi, S., & Mohammadi, M. (2023). The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovascular Disorders, 23(1).
https://doi.org/10.1186/s12872-023-03231-w
16. Epilepsy. (2023, February 9).
https://www.who.int/news-room/fact-sheets/detail/epilepsy#:~:text=Rates%20of%20disease-,Epilepsy%20accounts%20for%20a%20significant%20proportion%20of%20the%20world%27s%20disease,and%2010%20per%201000%20people
17. Glioblastoma multiforme. (n.d.). Aans.org. Retrieved December 13, 2023, from https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme
18. Exuzides, A., Reddy, S. R., Chang, E., Ta, J. T., Patel, A. M., Paydar, C., & Yohrling, G. J. (2022, January 1). Epidemiology of Huntington’s Disease in the United States Medicare and Medicaid Populations. Neuroepidemiology.
https://doi.org/10.1159/000524732
19. Torre, L. A., Trabert, B., DeSantis, C. E., Miller, K. D., Samimi, G., Runowicz, C. D., Gaudet, M. M., Jemal, A., & Siegel, R. L. (2018). Ovarian cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(4), 284–296.
https://doi.org/10.3322/caac.21456
20. Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128.
https://doi.org/10.31887/dcns.2009.11.2/cqiu
21. Targum, S. D., Schappi, J., Koutsouris, A., Bhaumik, R., Rapaport, M. H., Rasgon, N., & Rasenick, M. M. (2022). A novel peripheral biomarker for depression and antidepressant response. Molecular Psychiatry, 27(3), 1640–1646.
https://doi.org/10.1038/s41380-021-01399-1
22. Fragoso, M. C. B. V., Domenice, S., Latrônico, A. C., Martin, R. M., Pereira, M. A. A., Zerbini, M. C. N., Lucon, A. M., & Mendonca, B. B. (2003, May 1). Cushing’s Syndrome Secondary to Adrenocorticotropin-Independent Macronodular Adrenocortical Hyperplasia due to Activating Mutations ofGNAS1Gene. The Journal of Clinical Endocrinology & Metabolism.
https://doi.org/10.1210/jc.2002-021362
23. Arang, N., & Gutkind, J. S. (2020). G Protein‐Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Letters, 594(24), 4201–4232.
https://doi.org/10.1002/1873-3468.14017
24. Dumitrescu, C. E., & Collins, M. T. (2008). McCune-Albright syndrome. Orphanet Journal of Rare Diseases, 3(1), 12.
https://doi.org/10.1186/1750-1172-3-12
25. Jour, G., Oultache, A., Sadowska, J., Mitchell, T., Healey, J., Nafa, K., & Hameed, M. (2016). GNAS mutations in fibrous dysplasia: A comparative study of standard sequencing and locked nucleic acid PCR sequencing on decalcified and nondecalcified formalin-fixed paraffin-embedded tissues. Applied Immunohistochemistry & Molecular Morphology, 24(9), 660–667.
https://doi.org/10.1097/pai.0000000000000242
26. Jüppner, H. (2021). Molecular definition of pseudohypoparathyroidism variants. The Journal of Clinical Endocrinology and Metabolism, 106(6), 1541–1552.
https://doi.org/10.1210/clinem/dgab060
27. Arang, N., & Gutkind, J. S. (2020). G Protein‐Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Letters, 594(24), 4201–4232.
https://doi.org/10.1002/1873-3468.14017
28. Mendes de Oliveira, E., Keogh, J. M., Talbot, F., Henning, E., Ahmed, R., Perdikari, A., Bounds, R., Wasiluk, N., Ayinampudi, V., Barroso, I., Mokrosiński, J., Jyothish, D., Lim, S., Gupta, S., Kershaw, M., Matei, C., Partha, P., Randell, T., McAulay, A., … Farooqi, I. S. (2021). Obesity-associated GNAS mutations and the melanocortin pathway. The New England Journal of Medicine, 385(17), 1581–1592.
https://doi.org/10.1056/nejmoa2103329
29. Dziurkowska, E., & Wesolowski, M. (2021). Cortisol as a biomarker of mental disorder severity. Journal of Clinical Medicine, 10(21), 5204.
https://doi.org/10.3390/jcm10215204
30. Reinehr, T., Kulle, A., Wolters, B., Knop, C., Lass, N., Welzel, M., & Holterhus, P.-M. (2014). Relationships between 24-hour urinary free cortisol concentrations and metabolic syndrome in obese children. The Journal of Clinical Endocrinology and Metabolism, 99(7), 2391–2399.
https://doi.org/10.1210/jc.2013-4398
31. Sævik, Å. B., Wolff, A. B., Björnsdottir, S., Simunkova, K., Hynne, M. S., Dolan, D. W. P., Bratland, E., Knappskog, P. M., Methlie, P., Carlsen, S., Isaksson, M., Bensing, S., Kämpe, O., Husebye, E. S., Løvås, K., & Øksnes, M. (2021). Potential transcriptional biomarkers to guide glucocorticoid replacement in autoimmune Addison’s disease. Journal of the Endocrine Society, 5(3), bvaa202.
https://doi.org/10.1210/jendso/bvaa202
32. Fiksdal, A., Hanlin, L., Kuras, Y., Gianferante, D., Chen, X., Thoma, M. V., & Rohleder, N. (2019). Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology, 102, 44–52.
https://doi.org/10.1016/j.psyneuen.2018.11.035
33. Høifødt, R. S., Waterloo, K., Wang, C. E. A., Eisemann, M., Figenschau, Y., & Halvorsen, M. (2019). Cortisol levels and cognitive profile in major depression: A comparison of currently and previously depressed patients. Psychoneuroendocrinology, 99, 57–65.
https://doi.org/10.1016/j.psyneuen.2018.08.024
34. Labad, J., Stojanovic-Pérez, A., Montalvo, I., Solé, M., Cabezas, Á., Ortega, L., Moreno, I., Vilella, E., Martorell, L., Reynolds, R. M., & Gutiérrez-Zotes, A. (2015). Stress biomarkers as predictors of transition to psychosis in at-risk mental states: Roles for cortisol, prolactin and albumin. Journal of Psychiatric Research, 60, 163–169.
https://doi.org/10.1016/j.jpsychires.2014.10.011
35. Brenner, K., Liu, A., Laplante, D. P., Lupien, S., Pruessner, J. C., Ciampi, A., Joober, R., & King, S. (2009). Cortisol response to a psychosocial stressor in schizophrenia: Blunted, delayed, or normal? Psychoneuroendocrinology, 34(6), 859–868.
https://doi.org/10.1016/j.psyneuen.2009.01.002
36. Bancos, I., Hatipoglu, B. A., Yuen, K. C. J., Chandramohan, L., Chaudhari, S., & Moraitis, A. G. (2021). Evaluation of FKBP5 as a cortisol activity biomarker in patients with ACTH-dependent Cushing syndrome. Journal of Clinical & Translational Endocrinology, 24(100256), 100256.
https://doi.org/10.1016/j.jcte.2021.100256
37. Moncrieff, J., Cooper, R. E., Stockmann, T., Amendola, S., Hengartner, M. P., & Horowitz, M. A. (2023). The serotonin theory of depression: a systematic umbrella review of the evidence. Molecular Psychiatry, 28(8), 3243–3256.
https://doi.org/10.1038/s41380-022-01661-0
38. van Galen, K. A., ter Horst, K. W., & Serlie, M. J. (2021). Serotonin, food intake, and obesity. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 22(7).
https://doi.org/10.1111/obr.13210
39. Shanahan, N. A., Velez, L. P., Masten, V. L., & Dulawa, S. C. (2011). Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biological Psychiatry, 70(11), 1039–1048.
https://doi.org/10.1016/j.biopsych.2011.07.032
40. Yabut, J. M., Crane, J. D., Green, A. E., Keating, D. J., Khan, W. I., & Steinberg, G. R. (2019). Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocrine Reviews, 40(4), 1092–1107.
https://doi.org/10.1210/er.2018-00283
41. Fraer, M., & Kilic, F. (2015). Serotonin: A different player in hypertension-associated thrombosis. Hypertension, 65(5), 942–948.
https://doi.org/10.1161/hypertensionaha.114.05061
42. Steiger, H. (2004). Eating disorders and the serotonin connection: state, trait and developmental effects. Journal of Psychiatry and Neuroscience, 29(1), 20.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC305267/
43. Stahl, S. M. (2016). Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome. CNS Spectrums, 21(5), 355–359.
https://doi.org/10.1017/s1092852916000602
1. Ultrasensitive fluorescence detection of Fe3+ ions using fluorescein isothiocyanate functionalized Ag/SiO2/SiO2 core–shell nanocomposites - Journal of Materials Science: Materials in Electronics
Rajbongshi et al.
https://link.springer.com/article/10.1007/s10854-019-00852-w#Abs1
2. Isothermal real time DNA amplification instrument
Terrijärvi
https://lutpub.lut.fi/handle/10024/159386