OptKnock Calculation

Algorithm Principles

After obtaining the modified Yeast8 model, we can begin the metabolic flux rearrangement in the model towards our desired target products, such as santalol and sclareol. We can knock out some non-essential genes to reduce the flux towards non-essential reactions. Here, we are using the OptKnock algorithm[8], whose mathematical expression is as follows:

\( \begin{aligned} \underset{y_i}{maximize}\ \ \ &v_{chemical}\\ subject\ to\ \ \ &\underset{v_j}{maximize}\ v_{biomass}\\ &\begin{bmatrix} subject\ to\ \sum_{j=1}^MS_{ij}v_j=0,&\\ &v_{pts}+v_{glk}=v_{glc-uptake}\\ &v_{atp}\geq v_{atp-main}\\ &v_{biomass}\geq v_{biomass}^{target}\\ &v_j^{min}\cdot y_j\leq v_j\leq v_j^{max}\cdot y_j, \forall j\in M\\ \end{bmatrix}\\ &y_j=\{0,1\},\ \forall j\in N\\ &\sum_{j\in M}(1-y_j)\leq K \end{aligned} \)

The core idea of this algorithm is to use mathematical optimization methods to find the best combination of gene knockouts to increase the production rate of the target product without affecting normal cell growth and metabolic activities. This approach can assist teams in designing more efficient metabolic engineering strategies to improve the production efficiency of target products.


Candidate Reaction Set Determination

Since the OptKnock algorithm targets reactions rather than genes, running the OptKnock algorithm requires determining the set of candidate reactions that can be deleted. Typically, we need to remove the following four types of reactions from the candidate reaction set[9]:

    (1)Reactions essential for biomass growth.

    (2)Non-gene-associated reactions, spontaneous reactions, and diffusion reactions.

    (3)Reactions specific to certain subsystems, such as cell membrane biosynthesis, lipid metabolism, inorganic ion transport, etc.

    (4)Reactions involved in coupled reaction subsets, where only one reaction is analyzed.

With the help of COBRA Toolbox v2.0[10], we can use the singleGeneDeletion command to identify genes essential for growth and remove their corresponding reactions from the candidate set, thus completing step (1). Combining the description of reactions in the Yeast8 model with the KEGG database, we can filter out reactions related to steps (2), (3), and (4) from the candidate reaction set. At this point, we have essentially constructed the candidate reaction set, which consists of 476 reactions. You can see them in Table 3.

Table 3. Candidate reaction set
Abbreviation GPR Subsystem
r_0006 YGR143W or YPR159W Starch and sucrose metabolism
r_0018 YER152C or YGL202W or YJL060W Lysine metabolism
r_0020 YDR035W or YBR249C Phenylalanine, tyrosine and tryptophan biosynthesis
r_0024 YNL104C or YOR108W Valine, leucine and isoleucine metabolism
r_0032 YOL064C Sulfur metabolism
r_0080 YGL125W or YPL023C One carbon pool by folate
r_0103 YPL028W Fatty acid degradation
r_0112 YAL054C or YLR153C Pyruvate metabolism
r_0127 YCR048W or YNR019W Steroid biosynthesis
r_0139 YDR441C or YML022W Purine metabolism
r_0142 YJR105W Purine metabolism
r_0148 YDL166C or YDR226W Purine metabolism
r_0156 YFL030W Alanine, aspartate and glutamate metabolism
r_0165 YGL256W or YMR083W Glycolysis / gluconeogenesis
r_0173 YPL061W Glycolysis / gluconeogenesis
r_0174 YOR374W Glycolysis / gluconeogenesis
r_0211 YGR124W or YPR145W Alanine, aspartate and glutamate metabolism
r_0216 YLR027C Alanine, aspartate and glutamate metabolism
r_0217 YKL106W Alanine, aspartate and glutamate metabolism
r_0252 YAR035W or YER024W Carnitine metabolism
r_0254 YML042W Carnitine metabolism
r_0255 YGR088W Glyoxylate and dicarboxylate metabolism
r_0280 YLR304C Citrate cycle (TCA cycle)
r_0300 YNR001C or YPR001W Citrate cycle (TCA cycle)
r_0302 YLR304C Citrate cycle (TCA cycle)
r_0303 YLR304C Citrate cycle (TCA cycle)
r_0307 YBL039C or YJR103W Pyrimidine metabolism
r_0311 YJR130C Cysteine and methionine metabolism
r_0326 YHR144C Pyrimidine metabolism
r_0348 YDL100C Folate biosynthesis
r_0362 ( YAL023C and YDL095W ) or YDL093W or YJR143C or YOR321W N-glycan biosynthesis
r_0366 YPL281C or YGR254W or YHR174W or YMR323W or YOR393W Glycolysis / gluconeogenesis
r_0441 YLR011W Riboflavin metabolism
r_0454 YEL047C Citrate cycle (TCA cycle)
r_0455 YEL047C Cellular response to anaerobic conditions
r_0459 YBR018C Galactose metabolism
r_0471 YAL062W or YOR375C Alanine, aspartate and glutamate metabolism
r_0486 YGR192C or YJL052W or YJR009C Glycolysis / gluconeogenesis
r_0492 YOL059W Glycerophospholipid metabolism
r_0501 YAL044C and YDR019C and YFL018C and YMR189W Glycine, serine and threonine metabolism
r_0502 YLR058C Glycine, serine and threonine metabolism
r_0503 YBR263W Glycine, serine and threonine metabolism
r_0505 ( YAL044C and YDR019C and YFL018C and YMR189W ) or ( YDR148C and YFL018C and YIL125W ) Glycine, serine and threonine metabolism
r_0510 ( YFR015C and YJL137C ) or ( YFR015C and YKR058W ) or ( YJL137C and YLR258W ) or ( YKR058W and YLR258W ) Starch and sucrose metabolism
r_0512 YBR121C or YPR081C tRNA metabolism
r_0530 YER141W or ( YDR376W and YPL252C ) Porphyrin and chlorophyll metabolism
r_0558 YLR450W or YML075C Terpenoid backbone biosynthesis
r_0565 YHR216W or YLR432W or YML056C Purine metabolism
r_0569 YMR267W Oxidative phosphorylation
r_0570 YLR028C or YMR120C Purine metabolism
r_0658 YNL037C and YOR136W Citrate cycle (TCA cycle)
r_0659 YLR174W Citrate cycle (TCA cycle)
r_0674 YLR089C Alanine, aspartate and glutamate metabolism
r_0713 YKL085W Citrate cycle (TCA cycle)
r_0714 YOL126C Citrate cycle (TCA cycle)
r_0716 YIR031C or YNL117W Pyruvate metabolism
r_0718 YKL029C Pyruvate metabolism
r_0726 YDR502C or YLR180W Cysteine and methionine metabolism
r_0757 YDR287W or YHR046C Inositol phosphate metabolism
r_0771 YEL041W or YJR049C Nicotinate and nicotinamide metabolism
r_0785 YGR010W or YLR328W Nicotinate and nicotinamide metabolism
r_0815 YLL058W or YML082W or YAL012W Cysteine and methionine metabolism
r_0819 YLR438W Arginine and proline metabolism
r_0820 YML106W or YMR271C Pyrimidine metabolism
r_0831 ( YDR148C and YFL018C and YIL125W and YFR049W ) or ( YDR148C and YFL018C and YIL125W ) Citrate cycle (TCA cycle)
r_0832 ( YDR148C and YFL018C and YIL125W and YFR049W ) or ( YDR148C and YFL018C and YIL125W ) Citrate cycle (TCA cycle)
r_0841 YGR277C Pantothenate and coa biosynthesis
r_0851 YGL202W Phenylalanine, tyrosine and tryptophan biosynthesis
r_0888 YMR105C or YKL127W Pentose phosphate pathway
r_0893 YOR283W or YKL152C Glycolysis / gluconeogenesis
r_0912 YLR028C or YMR120C Purine metabolism
r_0916 ( YKL181W and YER099C ) or ( YKL181W and YHL011C ) or ( YKL181W and YBL068W ) or ( YER099C and YOL061W ) or ( YBL068W and YOL061W ) Pentose phosphate pathway
r_0974 YER070W or YGR180C or YIL066C or YJL026W Purine metabolism
r_0978 YER070W or YGR180C or YIL066C or YJL026W Purine metabolism
r_0984 YJL121C Pentose phosphate pathway
r_0995 YDR023W or YHR011W tRNA metabolism
r_1000 YEL047C Cellular response to anaerobic conditions
r_1026 YCL050C Sulfur metabolism
r_1038 ( YDR353W and YGR209C ) or ( YDR353W and YLR043C ) or YDR353W Glutathione metabolism
r_1048 YGR043C or YLR354C Pentose phosphate pathway
r_1049 YBR117C or YPR074C Pentose phosphate pathway
r_1050 YBR117C or YPR074C Pentose phosphate pathway
r_1063 YGL202W Tyrosine metabolism
r_1071 YBR018C Galactose metabolism
r_1084 YHL012W or YKL035W Galactose metabolism
r_1667 YNL036W Nitrogen metabolism
r_1729 YDL166C Purine metabolism
r_1838 YDL131W or YDL182W Pyruvate metabolism
r_2117 YHR137W Phenylalanine, tyrosine and tryptophan biosynthesis
r_2119 YHR137W Phenylalanine, tyrosine and tryptophan biosynthesis
r_2126 YKR043C Glycolysis / gluconeogenesis
r_2131 YDL066W Citrate cycle (TCA cycle)
r_2156 YCR034W Biosynthesis of unsaturated fatty acids
r_2163 YBR159W Biosynthesis of unsaturated fatty acids
r_2170 YJL097W Biosynthesis of unsaturated fatty acids
r_2177 YDL015C Biosynthesis of unsaturated fatty acids
r_2194 YOR317W Fatty acid biosynthesis
r_2195 YMR246W or YOR317W Fatty acid biosynthesis
r_2196 YMR246W or YOR317W Fatty acid biosynthesis
r_2197 YMR246W or YOR317W Fatty acid biosynthesis
r_2198 YMR246W or YOR317W Fatty acid biosynthesis
r_2199 YMR246W or YOR317W Fatty acid biosynthesis
r_2200 YOR317W Fatty acid biosynthesis
r_2201 YMR246W or YOR317W Fatty acid biosynthesis
r_2202 YMR246W or YOR317W Fatty acid biosynthesis
r_2203 YMR246W or YOR317W Fatty acid biosynthesis
r_2204 YMR246W or YOR317W Fatty acid biosynthesis
r_2205 YMR246W or YOR317W Fatty acid biosynthesis
r_2214 YBR041W Fatty acid biosynthesis
r_2215 YBR041W Fatty acid biosynthesis
r_2217 YBR041W Fatty acid biosynthesis
r_2218 YBR041W Fatty acid biosynthesis
r_2305 YLR304C Citrate cycle (TCA cycle)
r_2332 YOR175C Glycerolipid metabolism
r_2334 YOR175C Glycerolipid metabolism
r_2335 YDL052C or YOR175C Glycerolipid metabolism
r_2336 YOR175C Glycerolipid metabolism
r_2346 YMR165C Glycerolipid metabolism
r_2383 YCR048W or YNR019W or YOR245C Glycerolipid metabolism
r_2386 YCR048W or YNR019W or YOR245C Glycerolipid metabolism
r_2397 YCR048W or YNR019W or YOR245C Glycerolipid metabolism
r_2464 YNL169C Glycerophospholipid metabolism
r_2469 YNL169C Glycerophospholipid metabolism
r_2620 YPR140W Glycerophospholipid metabolism
r_2621 YPR140W Glycerophospholipid metabolism
r_2622 YPR140W Glycerophospholipid metabolism
r_2623 YPR140W Glycerophospholipid metabolism
r_2624 YPR140W Glycerophospholipid metabolism
r_2625 YPR140W Glycerophospholipid metabolism
r_2626 YPR140W Glycerophospholipid metabolism
r_2627 YPR140W Glycerophospholipid metabolism
r_2628 YPR140W Glycerophospholipid metabolism
r_2629 YPR140W Glycerophospholipid metabolism
r_2630 YPR140W Glycerophospholipid metabolism
r_2631 YPR140W Glycerophospholipid metabolism
r_2632 YPR140W Glycerophospholipid metabolism
r_2633 YPR140W Glycerophospholipid metabolism
r_2634 YPR140W Glycerophospholipid metabolism
r_2635 YPR140W Glycerophospholipid metabolism
r_2636 YPR140W Glycerophospholipid metabolism
r_2637 YPR140W Glycerophospholipid metabolism
r_2638 YPR140W Glycerophospholipid metabolism
r_2639 YPR140W Glycerophospholipid metabolism
r_2640 YPR140W Glycerophospholipid metabolism
r_2641 YPR140W Glycerophospholipid metabolism
r_2642 YPR140W Glycerophospholipid metabolism
r_2643 YPR140W Glycerophospholipid metabolism
r_2644 YPR140W Glycerophospholipid metabolism
r_2645 YPR140W Glycerophospholipid metabolism
r_2646 YPR140W Glycerophospholipid metabolism
r_2647 YPR140W Glycerophospholipid metabolism
r_2648 YPR140W Glycerophospholipid metabolism
r_2649 YPR140W Glycerophospholipid metabolism
r_2650 YPR140W Glycerophospholipid metabolism
r_2651 YPR140W Glycerophospholipid metabolism
r_2652 YPR140W Glycerophospholipid metabolism
r_2653 YPR140W Glycerophospholipid metabolism
r_2654 YPR140W Glycerophospholipid metabolism
r_2655 YPR140W Glycerophospholipid metabolism
r_2656 YPR140W Glycerophospholipid metabolism
r_2657 YPR140W Glycerophospholipid metabolism
r_2658 YPR140W Glycerophospholipid metabolism
r_2659 YPR140W Glycerophospholipid metabolism
r_2660 YPR140W Glycerophospholipid metabolism
r_2661 YPR140W Glycerophospholipid metabolism
r_2662 YPR140W Glycerophospholipid metabolism
r_2663 YPR140W Glycerophospholipid metabolism
r_2664 YPR140W Glycerophospholipid metabolism
r_2665 YPR140W Glycerophospholipid metabolism
r_2666 YPR140W Glycerophospholipid metabolism
r_2667 YPR140W Glycerophospholipid metabolism
r_2668 YPR140W Glycerophospholipid metabolism
r_2669 YPR140W Glycerophospholipid metabolism
r_2670 YPR140W Glycerophospholipid metabolism
r_2671 YPR140W Glycerophospholipid metabolism
r_2672 YPR140W Glycerophospholipid metabolism
r_2673 YPR140W Glycerophospholipid metabolism
r_2674 YPR140W Glycerophospholipid metabolism
r_2675 YPR140W Glycerophospholipid metabolism
r_2676 YPR140W Glycerophospholipid metabolism
r_2677 YPR140W Glycerophospholipid metabolism
r_2678 YPR140W Glycerophospholipid metabolism
r_2679 YPR140W Glycerophospholipid metabolism
r_2680 YPR140W Glycerophospholipid metabolism
r_2681 YPR140W Glycerophospholipid metabolism
r_2682 YPR140W Glycerophospholipid metabolism
r_2683 YPR140W Glycerophospholipid metabolism
r_2684 YPR140W Glycerophospholipid metabolism
r_2685 YPR140W Glycerophospholipid metabolism
r_2686 YPR140W Glycerophospholipid metabolism
r_2687 YPR140W Glycerophospholipid metabolism
r_2688 YPR140W Glycerophospholipid metabolism
r_2689 YPR140W Glycerophospholipid metabolism
r_2690 YPR140W Glycerophospholipid metabolism
r_2691 YPR140W Glycerophospholipid metabolism
r_2692 YPR140W Glycerophospholipid metabolism
r_2693 YPR140W Glycerophospholipid metabolism
r_2694 YPR140W Glycerophospholipid metabolism
r_2695 YPR140W Glycerophospholipid metabolism
r_2696 YPR140W Glycerophospholipid metabolism
r_2697 YPR140W Glycerophospholipid metabolism
r_2700 YPR140W Glycerophospholipid metabolism
r_2701 YPR140W Glycerophospholipid metabolism
r_2702 YPR140W Glycerophospholipid metabolism
r_2703 YPR140W Glycerophospholipid metabolism
r_2704 YPR140W Glycerophospholipid metabolism
r_2705 YPR140W Glycerophospholipid metabolism
r_2706 YPR140W Glycerophospholipid metabolism
r_2707 YPR140W Glycerophospholipid metabolism
r_2708 YPR140W Glycerophospholipid metabolism
r_2709 YPR140W Glycerophospholipid metabolism
r_2710 YPR140W Glycerophospholipid metabolism
r_2711 YPR140W Glycerophospholipid metabolism
r_2712 YPR140W Glycerophospholipid metabolism
r_2713 YPR140W Glycerophospholipid metabolism
r_2714 YPR140W Glycerophospholipid metabolism
r_2715 YPR140W Glycerophospholipid metabolism
r_2716 YPR140W Glycerophospholipid metabolism
r_2717 YPR140W Glycerophospholipid metabolism
r_2718 YPR140W Glycerophospholipid metabolism
r_2719 YPR140W Glycerophospholipid metabolism
r_2720 YPR140W Glycerophospholipid metabolism
r_2721 YPR140W Glycerophospholipid metabolism
r_2722 YPR140W Glycerophospholipid metabolism
r_2723 YPR140W Glycerophospholipid metabolism
r_2724 YPR140W Glycerophospholipid metabolism
r_2725 YPR140W Glycerophospholipid metabolism
r_2726 YPR140W Glycerophospholipid metabolism
r_2727 YPR140W Glycerophospholipid metabolism
r_2728 YPR140W Glycerophospholipid metabolism
r_2729 YPR140W Glycerophospholipid metabolism
r_2730 YPR140W Glycerophospholipid metabolism
r_2731 YPR140W Glycerophospholipid metabolism
r_2732 YPR140W Glycerophospholipid metabolism
r_2733 YPR140W Glycerophospholipid metabolism
r_2734 YPR140W Glycerophospholipid metabolism
r_2735 YPR140W Glycerophospholipid metabolism
r_2736 YPR140W Glycerophospholipid metabolism
r_2737 YPR140W Glycerophospholipid metabolism
r_2738 YPR140W Glycerophospholipid metabolism
r_2739 YPR140W Glycerophospholipid metabolism
r_2740 YPR140W Glycerophospholipid metabolism
r_2741 YPR140W Glycerophospholipid metabolism
r_2742 YPR140W Glycerophospholipid metabolism
r_2743 YPR140W Glycerophospholipid metabolism
r_2744 YPR140W Glycerophospholipid metabolism
r_2745 YPR140W Glycerophospholipid metabolism
r_2746 YPR140W Glycerophospholipid metabolism
r_2747 YPR140W Glycerophospholipid metabolism
r_2748 YPR140W Glycerophospholipid metabolism
r_2749 YPR140W Glycerophospholipid metabolism
r_2750 YPR140W Glycerophospholipid metabolism
r_2751 YPR140W Glycerophospholipid metabolism
r_2752 YPR140W Glycerophospholipid metabolism
r_2753 YPR140W Glycerophospholipid metabolism
r_2754 YPR140W Glycerophospholipid metabolism
r_2755 YPR140W Glycerophospholipid metabolism
r_2756 YPR140W Glycerophospholipid metabolism
r_2757 YPR140W Glycerophospholipid metabolism
r_2758 YPR140W Glycerophospholipid metabolism
r_2759 YPR140W Glycerophospholipid metabolism
r_2760 YPR140W Glycerophospholipid metabolism
r_2761 YPR140W Glycerophospholipid metabolism
r_2762 YPR140W Glycerophospholipid metabolism
r_2763 YPR140W Glycerophospholipid metabolism
r_2764 YPR140W Glycerophospholipid metabolism
r_2765 YPR140W Glycerophospholipid metabolism
r_2766 YPR140W Glycerophospholipid metabolism
r_2767 YPR140W Glycerophospholipid metabolism
r_2768 YPR140W Glycerophospholipid metabolism
r_2769 YPR140W Glycerophospholipid metabolism
r_2770 YPR140W Glycerophospholipid metabolism
r_2771 YPR140W Glycerophospholipid metabolism
r_2772 YPR140W Glycerophospholipid metabolism
r_2773 YPR140W Glycerophospholipid metabolism
r_2774 YPR140W Glycerophospholipid metabolism
r_2775 YPR140W Glycerophospholipid metabolism
r_2776 YPR140W Glycerophospholipid metabolism
r_2777 YPR140W Glycerophospholipid metabolism
r_2778 YPR140W Glycerophospholipid metabolism
r_2779 YPR140W Glycerophospholipid metabolism
r_2780 YPR140W Glycerophospholipid metabolism
r_2781 YPR140W Glycerophospholipid metabolism
r_2782 YPR140W Glycerophospholipid metabolism
r_2783 YPR140W Glycerophospholipid metabolism
r_2784 YPR140W Glycerophospholipid metabolism
r_2785 YPR140W Glycerophospholipid metabolism
r_2786 YPR140W Glycerophospholipid metabolism
r_2787 YPR140W Glycerophospholipid metabolism
r_2788 YPR140W Glycerophospholipid metabolism
r_2789 YPR140W Glycerophospholipid metabolism
r_2790 YPR140W Glycerophospholipid metabolism
r_2791 YPR140W Glycerophospholipid metabolism
r_2792 YPR140W Glycerophospholipid metabolism
r_2793 YPR140W Glycerophospholipid metabolism
r_2794 YPR140W Glycerophospholipid metabolism
r_2795 YPR140W Glycerophospholipid metabolism
r_2797 YPR140W Glycerophospholipid metabolism
r_2799 YPR140W Glycerophospholipid metabolism
r_2800 YPR140W Glycerophospholipid metabolism
r_2801 YPR140W Glycerophospholipid metabolism
r_2802 YPR140W Glycerophospholipid metabolism
r_2803 YPR140W Glycerophospholipid metabolism
r_2804 YPR140W Glycerophospholipid metabolism
r_2805 YPR140W Glycerophospholipid metabolism
r_2806 YPR140W Glycerophospholipid metabolism
r_2807 YPR140W Glycerophospholipid metabolism
r_2808 YPR140W Glycerophospholipid metabolism
r_2809 YPR140W Glycerophospholipid metabolism
r_2810 YPR140W Glycerophospholipid metabolism
r_2811 YPR140W Glycerophospholipid metabolism
r_2884 YNR008W Glycerolipid metabolism
r_2885 YNR008W Glycerolipid metabolism
r_2886 YNR008W Glycerolipid metabolism
r_2887 YNR008W Glycerolipid metabolism
r_2888 YNR008W Glycerolipid metabolism
r_2889 YNR008W Glycerolipid metabolism
r_2890 YNR008W Glycerolipid metabolism
r_2891 YNR008W Glycerolipid metabolism
r_2892 YNR008W Glycerolipid metabolism
r_2893 YNR008W Glycerolipid metabolism
r_2894 YNR008W Glycerolipid metabolism
r_2895 YNR008W Glycerolipid metabolism
r_2896 YNR008W Glycerolipid metabolism
r_2897 YNR008W Glycerolipid metabolism
r_2898 YNR008W Glycerolipid metabolism
r_2899 YNR008W Glycerolipid metabolism
r_2900 YNR008W Glycerolipid metabolism
r_2901 YNR008W Glycerolipid metabolism
r_2902 YNR008W Glycerolipid metabolism
r_2903 YNR008W Glycerolipid metabolism
r_2904 YNR008W Glycerolipid metabolism
r_2905 YNR008W Glycerolipid metabolism
r_2906 YNR008W Glycerolipid metabolism
r_2907 YNR008W Glycerolipid metabolism
r_2908 YNR008W Glycerolipid metabolism
r_2909 YNR008W Glycerolipid metabolism
r_2910 YNR008W Glycerolipid metabolism
r_2911 YNR008W Glycerolipid metabolism
r_2912 YNR008W Glycerolipid metabolism
r_2913 YNR008W Glycerolipid metabolism
r_2914 YNR008W Glycerolipid metabolism
r_2915 YNR008W Glycerolipid metabolism
r_2916 YNR008W Glycerolipid metabolism
r_2917 YNR008W Glycerolipid metabolism
r_2918 YNR008W Glycerolipid metabolism
r_2919 YNR008W Glycerolipid metabolism
r_2920 YNR008W Glycerolipid metabolism
r_2921 YNR008W Glycerolipid metabolism
r_2922 YNR008W Glycerolipid metabolism
r_2923 YNR008W Glycerolipid metabolism
r_2924 YNR008W Glycerolipid metabolism
r_2925 YNR008W Glycerolipid metabolism
r_2926 YNR008W Glycerolipid metabolism
r_2927 YNR008W Glycerolipid metabolism
r_2928 YNR008W Glycerolipid metabolism
r_2929 YNR008W Glycerolipid metabolism
r_2930 YNR008W Glycerolipid metabolism
r_2931 YNR008W Glycerolipid metabolism
r_2932 YNR008W Glycerolipid metabolism
r_2933 YNR008W Glycerolipid metabolism
r_2934 YNR008W Glycerolipid metabolism
r_2935 YNR008W Glycerolipid metabolism
r_2936 YNR008W Glycerolipid metabolism
r_2937 YNR008W Glycerolipid metabolism
r_2938 YNR008W Glycerolipid metabolism
r_2939 YNR008W Glycerolipid metabolism
r_2940 YNR008W Glycerolipid metabolism
r_2941 YNR008W Glycerolipid metabolism
r_2942 YNR008W Glycerolipid metabolism
r_2943 YNR008W Glycerolipid metabolism
r_2944 YNR008W Glycerolipid metabolism
r_2945 YNR008W Glycerolipid metabolism
r_2946 YNR008W Glycerolipid metabolism
r_2947 YNR008W Glycerolipid metabolism
r_2948 YNR008W Glycerolipid metabolism
r_2949 YNR008W Glycerolipid metabolism
r_2950 YNR008W Glycerolipid metabolism
r_2951 YNR008W Glycerolipid metabolism
r_2952 YNR008W Glycerolipid metabolism
r_2953 YNR008W Glycerolipid metabolism
r_2954 YNR008W Glycerolipid metabolism
r_2955 YNR008W Glycerolipid metabolism
r_2956 YNR008W Glycerolipid metabolism
r_2957 YNR008W Glycerolipid metabolism
r_2958 YNR008W Glycerolipid metabolism
r_2959 YNR008W Glycerolipid metabolism
r_2960 YNR008W Glycerolipid metabolism
r_2961 YNR008W Glycerolipid metabolism
r_2962 YNR008W Glycerolipid metabolism
r_2963 YNR008W Glycerolipid metabolism
r_2964 YNR008W Glycerolipid metabolism
r_2965 YNR008W Glycerolipid metabolism
r_2966 YNR008W Glycerolipid metabolism
r_2967 YNR008W Glycerolipid metabolism
r_2968 YNR008W Glycerolipid metabolism
r_2969 YNR008W Glycerolipid metabolism
r_2970 YNR008W Glycerolipid metabolism
r_2971 YNR008W Glycerolipid metabolism
r_2972 YNR008W Glycerolipid metabolism
r_2973 YNR008W Glycerolipid metabolism
r_2974 YNR008W Glycerolipid metabolism
r_2975 YNR008W Glycerolipid metabolism
r_2976 YNR008W Glycerolipid metabolism
r_2977 YNR008W Glycerolipid metabolism
r_2978 YNR008W Glycerolipid metabolism
r_2979 YNR008W Glycerolipid metabolism
r_2980 YNR008W Glycerolipid metabolism
r_2981 YNR008W Glycerolipid metabolism
r_2982 YNR008W Glycerolipid metabolism
r_2983 YNR008W Glycerolipid metabolism
r_2984 YNR008W Glycerolipid metabolism
r_2985 YNR008W Glycerolipid metabolism
r_2986 YNR008W Glycerolipid metabolism
r_2987 YNR008W Glycerolipid metabolism
r_2988 YNR008W Glycerolipid metabolism
r_2989 YNR008W Glycerolipid metabolism
r_2990 YNR008W Glycerolipid metabolism
r_2991 YNR008W Glycerolipid metabolism
r_2992 YNR008W Glycerolipid metabolism
r_2993 YNR008W Glycerolipid metabolism
r_2994 YNR008W Glycerolipid metabolism
r_2995 YNR008W Glycerolipid metabolism
r_2996 YNR008W Glycerolipid metabolism
r_2997 YNR008W Glycerolipid metabolism
r_2998 YNR008W Glycerolipid metabolism
r_2999 YNR008W Glycerolipid metabolism
r_3000 YNR008W Glycerolipid metabolism
r_3001 YNR008W Glycerolipid metabolism
r_3002 YNR008W Glycerolipid metabolism
r_3003 YNR008W Glycerolipid metabolism
r_3004 YNR008W Glycerolipid metabolism
r_3005 YNR008W Glycerolipid metabolism
r_3006 YNR008W Glycerolipid metabolism
r_3007 YNR008W Glycerolipid metabolism
r_3008 YNR008W Glycerolipid metabolism
r_3009 YNR008W Glycerolipid metabolism
r_3010 YNR008W Glycerolipid metabolism
r_3011 YNR008W Glycerolipid metabolism
r_4039 YBL015W Pyruvate metabolism
r_4196 YIL043C or YML125C Amino sugar and nucleotide sugar metabolism
r_4226 YDR111C Alanine, aspartate and glutamate metabolism
r_4262 YJL200C Lysine metabolism
r_4264 YJR051W Cellular response to anaerobic conditions
r_4280 YLR239C Lipoic acid metabolism
r_4281 YLR239C Lipoic acid metabolism
r_4323 YOR196C Lipoic acid metabolism
r_4324 YOR196C Lipoic acid metabolism
r_4484 YJR130C or YLL058W or YML082W Cysteine and methionine metabolism
r_4570 YIL074C or YER081W Glycine, serine and threonine metabolism
r_4703 YOR251C Sulfur metabolism

Simulation Calculations

After determining the parameters, you can initiate the knockout calculations using the "OptKnock" command. (For detailed commands, please refer to the appendix.) We performed separate simulations for Santalol and Sclareol, setting the number of knockout reactions (K) ranging from 1 to 5. We recorded the fluxes of the target compound exchange reactions and the biomass equation before and after the knockout. The results are shown as follows:

Table 4. OptKnock strategy list for sclareol accumulation
Reactions to be Deleted GPR Target Compound Flux Biomass(before) Biomass(after)
'r_1002' YLR146C 0.0131 0.0277 0.0225
'r_0716';'r_1002' YIR031C or YNL117W;YLR146C 0.0131 0.0277 0.021
'r_0326';'r_0976';'r_1063' YHR144C;YER070W or YGR180C or YIL066C or YJL026W;YGL202W 0.0341 0.0277 0.014
'r_0841';'r_1002';
'r_2117';'r_4262'
7C;YLR146C;YHR137W;YJL200C 0.0292 0.0277 0.016
'r_0454';'r_0841';'r_1002';
'r_1038';'r_1084’
YEL047C;YGR277C;YLR146C;( YDR353W and YGR209C ) or ( YDR353W and YLR043C ) or YDR353W;YHL012W or YKL035W 0.0341 0.0277 0.014
'r_1002' YLR146C 0.0131 0.0277 0.0225
'r_0716';'r_1002' YIR031C or YNL117W;YLR146C 0.0131 0.0277 0.021
'r_0326';'r_0976';'r_1063' YHR144C;YER070W or YGR180C or YIL066C or YJL026W;YGL202W 0.0341 0.0277 0.014
'r_0841';'r_1002';
'r_2117';'r_4262'
7C;YLR146C;YHR137W;YJL200C 0.0292 0.0277 0.016
'r_0454';'r_0841';'r_1002';
'r_1038';'r_1084’
YEL047C;YGR277C;YLR146C;( YDR353W and YGR209C ) or ( YDR353W and YLR043C ) or YDR353W;YHL012W or YKL035W 0.0341 0.0277 0.014
Table 5. OptKnock strategy list for santalol accumulation
Reactions to be Deleted GPR Target Compound Flux Biomass(before) Biomass(after)
'r_1002' YLR146C 0.0171 0.0277 0.0225
'r_0112';'r_0716' YAL054C or YLR153C;YIR031C or YNL117W 0.0253 0.0277 0.015
'r_0326';'r_0716';'r_0976' YHR144C;YIR031C or YNL117W;YER070W or YGR180C or YIL066C or YJL026W 0.0413 0.0277 0.014
'r_0326';'r_0976';
'r_2305';'r_4262'
YHR144C;YIR031C or YNL117W;YER070W or YGR180C or YIL066C or YJL026W;YLR304C;YJL200C 0.0413 0.0277 0.015
'r_0326';'r_0714';'r_0976' ;
'r_2953';'r_4226'’
YHR144C;YIR031C or YNL117W;YER070W or YGR180C or YIL066C or YJL026W;YNR008W;YDR111C 0.0446 0.0277 0.014

As shown in Table 4 and Table 5, when K=1, the knockout reactions provided are all 'r_1002', and they significantly increase the flux of the target compounds sclareol and santalol. The enzyme corresponding to 'r_1002' reaction is YLR146C, which was encoded by SPE4[11]. After consulting the literature, we found that this gene corresponds to the reaction involved in spermidine biosynthesis, and it is a non-essential gene[12]. Considering the complexity of gene knockout experiments, while knocking out more genes might further increase compound production, we ultimately chose to construct a mutant with SPE4 being knocked out.

OD-t Curve Verification

Our goal is to evaluate the impact of gene deletion on yeast growth based on the in vitro experiments.

In the experiment, we measured the optical density of yeast mutant strains ∆gal4 , ∆gal4gal80, and ∆gal4gal80SPE4 at 600 nm (OD600)[13]. To minimize random errors, we performed duplicate measurements, and the final results are shown in Table 6 and Figure 1.

Table 6. The time course of cell growths in terms of OD600
Time/h gal4-1. gal4-2. gal4gal80-1. gal4gal80-2. gal4gal80SPE4-1. gal4gal80SPE4-2.
0 0.1 0.1 0.1 0.1 0.1 0.1
4 0.326 0.289 0.26 0.375 0.318 0.209
8 2.36 2.03 1.81 2.26 1.55 2.20
12 3.48 3.14 3.52 3.03 3.22 3.74
24 6.36 6.34 5.92 5.97 5.87 6.91
35 10.54 8.60 7.48 8.92 7.42 10.34
48 10.53 10.02 10.98 10.92 11.91 12.90
60 10.53 11.04 10.77 9.42 9.99 10.17
72 12.12 13.02 12.66 12.06 12.81 14.46
83 11.49 11.19 10.89 10.32 10.56 12.03
Figure 1. The growth curve of ∆gal4 , ∆gal4gal80, and ∆ gal4gal80SPE4

From the above graph and data, it can be roughly observed that the actual differences in optical density among the three samples are small. However, for rigorous analysis, we used a more precise function to fit the growth curves. For the choice of the fitting function, we have opted for the commonly used logistic function[14] and performed the fitting based on the average of the two measurements for each group in the software Origin. The fitted curve results are as follows:

Figure 2. Fitted growth curves of ∆gal4 , ∆gal4gal80, and ∆ gal4gal80SPE4

As shown in Figure 2, it can be seen that the three curves align with our initial rough conclusion, as they all exhibit similar trends. We conducted pairwise two-sample t-tests for the three curves, considering both equal and unequal variances. The results support our observation: at the 0.05 significance level, there is no significant difference among the three curves.

In conclusion, based on the modeling work using the OD curves, we have demonstrated that the deletion of the target gene SPE4 had no significant impact on the growth of the yeast chasis itself .

Reference

  1. [1] Passi, Anurag et al. “Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data.” Metabolites vol. 12,1 14. 24 Dec. 2021, doi:10.3390/metabo12010014.
  2. [2] Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nature Communications 10, 3586 (2019). doi:10.1038/s41467-019-11581-3.
  3. [3] The yeast consensus genome-scale model [Lu et al. 2019], version 8.3.4 [Sánchez et al. 2019], was used.
  4. [4] Orth, Jeffrey D et al. “What is flux balance analysis?.” Nature biotechnology vol. 28,3 (2010): 245-8. doi:10.1038/nbt.1614.
  5. [5] Feldmann, and Horst. "Yeast (Molecular and Cell Biology) || Yeast Metabolism." (2012):25-58. DOI:10.1002/9783527659180.ch3.
  6. [6] Manina, Alessia Shelby, and Fabio Forlani. “Biotechnologies in Perfume Manufacturing: Metabolic Engineering of Terpenoid Biosynthesis.” International journal of molecular sciences vol. 24,9 7874. 26 Apr. 2023, doi:10.3390/ijms24097874.
  7. [7] Ruiz-Villafán, Beatriz et al. “Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system.” Microbial biotechnology vol. 15,4 (2022): 1058-1072. doi:10.1111/1751-7915.13791.
  8. [8] Burgard, Anthony P et al. “Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.” Biotechnology and bioengineering vol. 84,6 (2003): 647-57. doi:10.1002/bit.10803.
  9. [9] = Vlassis N, Pacheco MP, Sauter T (2014) Fast Reconstruction of Compact Context-Specific Metabolic Network Models. PLoS Comput Biol 10(1): e1003424.
  10. [10] Laurent Heirendt & Sylvain Arreckx, Thomas Pfau, Sebastian N. Mendoza, Anne Richelle, Almut Heinken, Hulda S. Haraldsdottir, Jacek Wachowiak, Sarah M. Keating, Vanja Vlasov, Stefania Magnusdottir, Chiam Yu Ng, German Preciat, Alise Zagare, Siu H.J. Chan, Maike K. Aurich, Catherine M. Clancy, Jennifer Modamio, John T. Sauls, Alberto Noronha, Aarash Bordbar, Benjamin Cousins, Diana C. El Assal, Luis V. Valcarcel, Inigo Apaolaza, Susan Ghaderi, Masoud Ahookhosh, Marouen Ben Guebila, Andrejs Kostromins, Nicolas Sompairac, Hoai M. Le, Ding Ma, Yuekai Sun, Lin Wang, James T. Yurkovich, Miguel A.P. Oliveira, Phan T. Vuong, Lemmer P. El Assal, Inna Kuperstein, Andrei Zinovyev, H. Scott Hinton, William A. Bryant, Francisco J. Aragon Artacho, Francisco J. Planes, Egils Stalidzans, Alejandro Maass, Santosh Vempala, Michael Hucka, Michael A. Saunders, Costas D. Maranas, Nathan E. Lewis, Thomas Sauter, Bernhard Ø. Palsson, Ines Thiele, Ronan M.T. Fleming, Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0, Nature Protocols, volume 14, pages 639–702, 2019 doi.org/10.1038/s41596-018-0098-2.
  11. [11] Hamasaki-Katagiri, N et al. “Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant.” Gene vol. 210,2 (1998): 195-201. doi:10.1016/s0378-1119(98)00027-4.
  12. [12] Amaradio, Matteo N et al. “L-lactate production in engineered Saccharomyces cerevisiae using a multistage multiobjective automated design framework.” Biotechnology and bioengineering vol. 120,7 (2023): 1929-1952. doi:10.1002/bit.28391.
  13. [13] Aho, Ken et al. “Model selection for ecologists: the worldviews of AIC and BIC.” Ecology vol. 95,3 (2014): 631-6. doi:10.1890/13-1452.1.
  14. [14] G. F. Gause (1932), Experimental studies on the struggle for existence. I. Mixed populations of two species of yeast, J. Exp. Biol. 9, p. 389.
  15. [15] Johnson, Valen E. “Revised standards for statistical evidence.” Proceedings of the National Academy of Sciences of the United States of America vol. 110,48 (2013): 19313-7. doi:10.1073/pnas.1313476110.

Appendice

  1. ⚫If the yeast8-model does not exist in Matlab, the instructions used when reading the model are:
  2. model=xls2model('model-eth-santalol.xlsx')
  3. ⚫If the model does not exist in Excel format but in. xml format, the instructions used when reading the model are:
  4. model=readCbModel('example.xml')
  5. ⚫If using BiomassPrecursorCheck for precursor metabolism detection of Biomass function, it is necessary to revise the Linear programming solver as follows
  6. ChangeCobraSolver(‘glpk’, ‘lp’) or ChangeCobraSolver(‘gurobi’,’lp’)
  7. [missingMets,presentMets] =biomassPrecursorCheck(model)
  8. ⚫If using Gap Analysis for gap detection of the entire network, it is necessary to first apply the Linear programming solver.Revise as follows:
  9. ChangeCobraSolver(‘glpk’, ‘milp’)
  10. [gaps]=gapAnalysis(model)
  11. ⚫If the reaction in the result is A ->B ->C ->D, then 'A=product', 'D=substrate'
  12. ⚫If you use GapFind to find gaps in the model, you also need to run it under the milp algorithm:
  13. [allGaps,rootGaps,downstreamGaps]=gapFind(model)
  14. ⚫If you want to add a reaction equation to the COBRA model that can be read into MATLAB, you can run:
  15. [allGaps,rootGaps,downstreamGaps]=gapFind(model)
  16. ⚫If you want to delete the reaction equation in the COBRA model that has been read into MATLAB, you can run:
  17. class="text-center">modelOut = removeRxns(model,’Rxn###’)
  18. ⚫If you want to change the objective equation in the GSMM model, you can run:
  19. Model=changeObjective(model,’Rxn###’)
  20. ⚫If you want to balance the reaction equation, you need to run the following command under lp:
  21. [massImbalance,imBalancedMass,imBalancedCharge,imBalancedBool,Elements] = checkMassChargeBalance(model)
  22. ⚫If you want to calculate the traffic of the target equation in the model, you need to run FBA:
  23. FBAsolution=optimizeCbModel(model)
  24. ⚫If you want to modify the objective equation after reading the model, you can run the following command:
  25. model=changeObjective(model,’Rxn###’)
  26. ⚫If you want to see the flow distribution of each reaction in the entire model, you need to first run the FBAsolution program, and then run the following instructions:
  27. printFluxVector(model,FBAsolution.x,1,1)
  28. ⚫If you need to convert a. mat file (MATLAB file) into an Excel or XML file, you need to upload it first.After reading the file on MATLAB, convert it to an xls or XML file. The specific instructions and steps are as follows:
  29. load(‘example.mat’)
  30. model=example
  31. writeCbModel(model,’xls’,’***.xls’)
  32. Then you can see the xls format of the model in the folder where ***.mat is located, and the XML file can be obtained similarly.
  33. ⚫If you need to save an xls or XML file in. mat format, proceed as follows:Save the model in xls format as. mat.
  34. Note: Calculate the Formula charge using Marvin beans software and a small plugin.
  35. ⚫If you want to use Cytoscape to draw a network diagram of a model, you can run the following operations:
  36. notShownMets=outputNetworkCytoscape(model,’iBH982’)
  37. Among the obtained files is an iBH982. sif file, which is imported into the Cytoscape software (file>import>network)You can obtain the desired image.
  38. ⚫If you want to determine the essential genes of the model, you need to run single gene knockout under FBA and LP planners.
  39. [grRatio,grRateKO,grRateWT,hasEffect,delRxns,fluxSolution] = singleGeneDeletion(model)
  40. Then open grRateKO from the workspace on the left, which is the growth rate of the model after gene deletion. In this list.The gene sequencing is consistent with the automatically generated gene sequence when reading the model. Gene name sequence in Workspace ->model ->genes.
  41. ⚫If you want to simulate pairing knockout, you need to run the double knockout command:
  42. [grRatioDble,grRateKO,grRateWT] = doubleGeneDeletion(model)
  43. The Optknit instruction can be used to calculate on the model FBA algorithm that can maximize the production of a certain substance while generating.The gene knockout target with the largest possible volume needs to be converted from the planner to a milp (Mixed Integer) when running this command.Linear Programming, and then run the following command:
  44. selectedRxns={model.rxns{[1:n]}}
  45. #N represents the Rxn range used to search for targets, such as from Rxn1 toRxn1000; Note: The range cannot be too large and cannot include transport Rxn, exchange Rxn, Biomass Rxn, NGAM Equation)#
  46. options.targetRxn=’Ex_lac-L[e]’
  47. #Ex_ Lac L [e] is the objective equation, which refers to the location of the compound that needs to maximize yield Reaction#
  48. options.vmax=1000
  49. #Hoping the target equation has the maximum flow rate#
  50. options.numDel=5
  51. #Targeting to identify up to 5 targets#
  52. options.numDelSense=’L’
  53. constrOpt.rxnList={‘Biomass’,’ATPM’}
  54. #Biomass is the name of the biomass equation, while ATPM is the Rxn name of the NGAM equation#
  55. constrOpt.values=[0.01,1.52]
  56. #In order to maximize the target product, the production of Biomass will inevitably decrease, but it cannot be lower than a certain value, otherwise the cell will not grow and synthesize substances Here, the minimum flow rate for the biomass equation is set to not be less than 0.01, and the flow rate for the NGAM equation is set to not be less than 1.52#
  57. constrOpt.sense=’GE’
  58. OptKnockSol=OptKnock(model,selectedRxns,options,constrOpt)
  59. From the instructions, it can be seen that the target product that wants to be maximized needs to be a growth coupled compound.