REFERENCES
Bacterial Dynamics
- Fujikawa, H., Kai, A., & Morozumi, S. (2004). A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiology, 21(5), 501-509.
- Kale, T., Khatri, D., & Athale, C. A. (2022). Cell size and shape regulation of E. coli determines surface area scaling with volume. bioRxiv, 2022-03.
- Nev, O. A., Lindsay, R. J., Jepson, A., Butt, L., Beardmore, R. E., & Gudelj, I. (2021). Predicting microbial growth dynamics in response to nutrient availability. PLoS computational biology, 17(3), e1008817.
- Williams, T. R., Moyne, A. L., Harris, L. J., & Marco, M. L. (2013). Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PloS one, 8(7), e68642.
Viral Dynamics
- Ogada, P. A., Moualeu, D. P., & Poehling, H.-M. (2016). Predictive models for tomato spotted wilt virus spread dynamics, considering Frankliniella occidentalis specific life processes as influenced by the virus. PLOS ONE, 11(5). https://doi.org/10.1371/journal.pone.0154533
Plant Health and Susceptibility
- Dhar, M., & Bhattacharya, P. (2019). Analysis of SIR epidemic model with different basic reproduction numbers and validation with HIV and TSWV data. Iranian Journal of Science and Technology, Transactions A: Science, 43, 2385-2397.
- Smith, D., & Moore, L. (2004). The SIR model for spread of disease-the differential equation model. Convergence.
- Prodanov, D. (2022). Analytical solutions and parameter estimation of the SIR epidemic model. Mathematical Analysis of Infectious Diseases, 163-189.Chicago
- Harrison, R. L. (2010, January). Introduction to monte carlo simulation. In AIP conference proceedings (Vol. 1204, No. 1, pp. 17-21). American Institute of Physics.
RNAi Mechanism
- Strauss, J., et al. Overview of Viruses and Virus Infection.
- The Monod Equation. https://en.wikipedia.org/wiki/Monod_equation
- Bergstrom, C. T., McKittrick, E., & Antia, R. (2003). Mathematical models of RNA silencing: Unidirectional amplification limits accidental self-directed reactions. Proceedings of the National Academy of Sciences, 100(20), 11511–11516. https://doi.org/10.1073/pnas.1931639100
- Groenenboom et al. The dynamics and efficacy of antiviral RNA silencing: A model study.
- Neofytou, G. (2017). Mathematical models of RNA interference in plants. Sussex Research Online.
- Voloudakis, A. E., Holeva, M. C., Sarin, L. P., Bamford, D. H., Vargas, M., Poranen, M. M., & Tenllado, F. (2014). Efficient double-stranded RNA production methods for utilization in plant virus control. Methods in Molecular Biology, 255–274. https://doi.org/10.1007/978-1-4939-1743-3_19