Modelling - Parabolic Mirrors


First, we present a geometric demonstration of the coma which forms when the angle between the axis of symmetry of the parabola and the incident rays, α\alpha, is not 0:


Following reflection, all rays continue to move in straight lines. Thus, a point (rKr2)\begin{pmatrix} r \\ Kr^2 \end{pmatrix} on the parabola gives rise to a ray:


(rKr2)+λ(a(r)b(r))forλ[0,)\begin{pmatrix} r \\ Kr^2 \end{pmatrix} + \lambda \begin{pmatrix} a(r) \\ b(r) \end{pmatrix}for \lambda \in [0,\infty)

Wave fronts can be considered to start along the parabola as only the phase is affected. The direction of rays before reflection is Aˉ=(sinαcosα)\bar{A} = \begin{pmatrix} sin\alpha \\ -cos\alpha \end{pmatrix}. (a(r)b(r))\begin{pmatrix} a(r) \\ b(r) \end{pmatrix} is a reflection of Aˉ\bar{A} in the normal to the parabola at (rKr2)\begin{pmatrix} r \\ Kr^2 \end{pmatrix}.


The normal is 14K2r2+1(2Kr1)=n^(r)\frac{1}{4K^2r^2+1} \begin{pmatrix} -2Kr \\ 1 \end{pmatrix} = \hat{n}(r)


The tangent is 14K2r2+1(12Kr)=T^(r)\frac{1}{4K^2r^2+1} \begin{pmatrix} 1 \\ 2Kr \end{pmatrix} = \hat{T}(r)

Thus

(a(r)b(r))=(Aˉn^)n^+(AˉT^)T^=14K2r2+1(cosα+2Krsinα)(2Kr1)+14K2r2+1(sinα2Krcosα)(12Kr)=14K2r2+1(sinα(14K2r2)cosα(4Kr)sinα(4Kr)+cosα(14K2r2))\begin{pmatrix} a(r) \\ b(r) \end{pmatrix} = -(\bar{A} \cdot \hat{n})\hat{n} + (\bar{A} \cdot \hat{T})\hat{T} \\ = \frac{1}{4K^2r^2+1} (cos\alpha + 2Krsin\alpha) \begin{pmatrix} -2Kr \\ 1 \end{pmatrix} + \frac{1}{4K^2r^2+1} (sin\alpha - 2Krcos\alpha) \begin{pmatrix} 1 \\ 2Kr \end{pmatrix} \\ = \frac{1}{4K^2r^2+1} \begin{pmatrix} sin\alpha (1-4K^2r^2) - cos\alpha(4Kr) \\ sin\alpha(4Kr) + cos\alpha(1-4K^2r^2) \end{pmatrix}

Therefore parameterising a point's position along the ray, λ\lambda, and the wave front, tt,

X(λ,t)=(tλsinα(14K2t21+4K2t2)λcosα(4Kt1+4K2t2))X(\lambda,t) = \left(t-\lambda sin\alpha \left(\frac{1-4K^2t^2}{1+4K^2t^2}\right) - \lambda cos\alpha \left(\frac{4Kt}{1+4K^2t^2}\right)\right)
Y(λ,t)=(Kt2λcosα(14K2t21+4K2t2)λsinα(4Kt1+4K2t2))Y(\lambda,t) = \left(Kt^2-\lambda cos\alpha \left(\frac{1-4K^2t^2}{1+4K^2t^2}\right) - \lambda sin\alpha \left(\frac{4Kt}{1+4K^2t^2}\right)\right)

It can be seen from the diagrams below that when α=0\alpha = 0 all rays pass through the focal point. It can also be seen that when α0\alpha \neq 0 there is a coma formed, as well as a shifted region which resembles a focal point, but will be of lower intensity. This alone is sufficient for the concept of diffracting collimated polychromatic light and selecting specific wavelengths to be focused to the focal point, allowing for data to be obtained on the relative intensities of arbitrarily specific wavelengths.However, I shall also model the intensity distribution near the focal point, so as to give a deeper understanding of the mechanism.


We shall work in spherical polar coordinates (r,θ,ϕ)(r,\theta , \phi) centred on (0,0,f)(0,0,f)


For an incident beam with intensity distribution I0(θ)I_0(\theta ) along z^\hat{z} axis, a paraboloid reflector: z2=K(x2+y2)z^2 = K(x^2+y^2) which has focal point at (0,0,f):


Near focus[1]:

Eˉ(r0,θ0,ϕ0)=12πi02π0θmaxa^(θ,ϕ)I0(θ)q(θ)eiKsˉ0rˉ0sin(θ)  dθ  dϕ\bar{E}(r_0,\theta_0 ,\phi_0 ) = \frac{1}{2\pi i} \int_0^{2 \pi } \int_0^{\theta_{max}} \hat{a} (\theta , \phi) I_0(\theta) q(\theta) e^{-i K \bar{s}_0 \cdot \bar{r}_0} sin(\theta) \; {d\theta} \; {d\phi}
  • a^(θ,ϕ)\hat{a} (\theta , \phi) is the polarization direction
  • s^(θ,ϕ)\hat{s} (\theta , \phi) is the unit vector in the direction of propagation
  • rˉ0\bar{r}_0 is the position vector of point of measurement (point (r0,θ0,ϕ0r_0, \theta_0 , \phi_0))
  • p(θ)p(\theta) is the apodization factor of a paraboloid

Note: PP depends on θ\theta as P(θ)=ftanθKP(θ)2tanθ=2f(secθ1tanθ)=2ftan(θ2)P(\theta) = f \, tan \theta - K \, P(\theta)^2 \, tan \theta = 2f \, \left(\frac{sec \theta - 1}{tan \theta}\right) = 2f \, tan\left(\frac{\theta}{2}\right)

The focal sphere is a sphere centred on (0,0,f)(0,0,f) with radius ff. Consider an infinitesimally thin annulus of radius RR taken from the incident beam. All of this light is focused into a strip on the focal sphere. The apodization factor, p(θ)p(\theta), ensures conservation of energy since it is defined as the ratio dSidSs\sqrt{\frac{dS_i}{dS_s}} where dSidS_i is an infinitesimal area of the incident beam (annulus) and dSsdS_s is the corresponding area on the focal sphere.


dSi=2πR  dRdS_i = 2 \pi R \; dR R=P(θ)=2ftan(θ2)R = P(\theta) = 2f \, tan\left(\frac{\theta}{2}\right) dR=fsec2(θ2)  dθdR = f \, sec^2\left(\frac{\theta}{2}\right) \; d\theta dSi=4πf2tan(θ2)sec2(θ2)  dθdS_i = 4 \pi f^2 \, tan\left(\frac{\theta}{2}\right) \, sec^2\left(\frac{\theta}{2}\right) \; d\theta dSs=(2πf)(sinθ)(fdθ)=2πf2sinθ  dθdS_s = (2 \pi f) (sin \theta) (f \, d\theta) = 2 \pi f^2 \, sin \theta \; d\theta p(θ)=dSidSs=4πf2tan(θ2)sec2(θ2)  dθ2πf2sinθ  dθ=2tan(θ2)sec2(θ2)2sin(θ2)cos(θ2)=sec2(θ2)p(\theta) = \sqrt{\frac{dS_i}{dS_s}} = \sqrt{\frac{4 \pi f^2 \, tan\left(\frac{\theta}{2}\right) sec^2\left(\frac{\theta}{2}\right) \; d\theta}{2 \pi f^2 \, sin \theta \; d\theta}} = \sqrt{\frac{2 tan\left(\frac{\theta}{2}\right) sec^2\left(\frac{\theta}{2}\right) }{2 sin\left(\frac{\theta}{2}\right) cos\left(\frac{\theta}{2}\right)}} = sec^2\left(\frac{\theta}{2}\right)

This result is the same as [2]

By convention:

rˉ0=r0(sinθ0cosϕ0sinθ0sinϕ0cosθ0)\bar{r}_0 = r_0 \begin{pmatrix} sin\theta_0 \, cos\phi_0 \\ sin\theta_0 \, sin\phi_0 \\ cos\theta_0\end{pmatrix}

For incident rays parallel to z^\hat{z}:

sˉ=(sinθcosϕsinθsinϕcosθ)\bar{s} = \begin{pmatrix} sin\theta \, cos\phi \\ sin\theta \, sin\phi \\ cos\theta\end{pmatrix}

Thus:


eiKsˉrˉ0=eiKr0(sinθsinθ0[cosϕcosϕ0+sinϕsinϕ0]+cosθcosθ0)=eiK(sinθsinθ0cos(ϕϕ0)+cosθcosθ0)e^{-iK\bar{s}\cdot\bar{r}_0} = e^{-i K r_0 (sin\theta \, sin\theta_0 \, [cos\phi\, cos\phi_0\, + sin\phi\, sin\phi_0] + cos\theta\, cos\theta_0)}\\ = e^{-iK(sin\theta\, sin\theta_0\,cos(\phi-\phi_0)+cos\theta\,cos\theta_0)}

It can be seen by similar reasoning to earlier with the tangent and normal factors that if:

  • Before reflection, a^0=(cosϕsinϕ0)\hat{a}_0 = \begin{pmatrix} cos\phi \\ sin\phi \\ 0 \end{pmatrix}

Then:

  • After reflection, a^(θ,ϕ)=(cosθcosϕcosθsinϕsinθ)\hat{a}(\theta,\phi) = \begin{pmatrix} cos\theta\, cos\phi \\ cos\theta\, sin\phi \\ sin\theta \end{pmatrix}

Therefore:

Eˉ(r0,θ0,ϕ0)=Kf2πi02π0θmaxI0(θ)sec2(θ2)sinθeiKr0[sinθsinθ0cos(ϕϕ0)+cosθcosθ0]a^(θ,ϕ)  dθ  dϕ\bar{E}(r_0, \theta_0,\phi_0) = \frac{Kf}{2\pi i}\int_0^{2\pi} \int_0^{\theta_{max}}I_0(\theta)sec^2\left(\frac{\theta}{2}\right)sin\theta e^{-iKr_0[sin\theta sin\theta_0 cos(\phi - \phi_0) + cos\theta cos\theta_0]} \hat{a}(\theta,\phi) \; d\theta \; d\phi

Note the following well known identities for the nthn^{th} bessel function of the first kind: Jn(x)J_n(x)

02πcos(nφ)eixcos(φε)dφ=2πinJn(x)cos(nφ)\int_0^{2\pi} cos(n\varphi)e^{ixcos(\varphi-\varepsilon)}d\varphi = 2\pi i^n J_n(x) cos(n\varphi)
02πsin(nφ)eixcos(φε)dφ=2πinJn(x)sin(nφ)\int_0^{2\pi} sin(n\varphi)e^{ixcos(\varphi-\varepsilon)}d\varphi = 2\pi i^n J_n(x) sin(n\varphi)

Thus:

Eˉ(r0,θ0,ϕ0)=Kf2πi0θmaxI0(θ)sinθsec2(θ2)eiKr0cosθ0cosθcosθ02π(cosϕsinϕtanθ)eiKr0(sinθ0sinθcos(ϕϕ0))dϕ  dθ=Kf0θmaxI0(θ)sinθsec2(θ2)eiKr0cosθ0cosθ(J1(Kr0sinθ0sinθ)cosϕ0J1(Kr0sinθ0sinθ)sinϕ0iJ0(Kr0sinθ0sinθ)tanθ)dθ\bar{E}(r_0,\theta_0,\phi_0) = \frac{Kf}{2\pi i} \int_0^{\theta_{max}} I_0(\theta) sin\theta \, sec^2\left(\frac{\theta}{2}\right)e^{-iKr_0 cos\theta_0 cos\theta} cos\theta \int_0^{2\pi} \begin{pmatrix} cos\phi \\ sin\phi \\ tan\theta \end{pmatrix} e^{-iKr_0(sin\theta_0sin\theta cos(\phi-\phi_0))}d\phi \; d\theta \\ = Kf \int_0^{\theta_{max}} I_0(\theta) sin\theta \, sec^2\left(\frac{\theta}{2}\right)e^{-iKr_0 cos\theta_0 cos\theta} \begin{pmatrix} J_1(Kr_0sin\theta_0sin\theta)cos\phi_0 \\ J_1(Kr_0sin\theta_0sin\theta)sin\phi_0 \\ -i J_0(Kr_0sin\theta_0sin\theta)tan\theta \end{pmatrix} d\theta

Making use of the symmetry of rotation about the z axis, we can represent this in cylindrical coordinates to eliminate one component:

Ez(r0,θ0,ϕ0)=Eˉz^=iKf0θmaxI0(θ)sec2(θ2)sin2θeiKr0cosθ0cosθJ0(Kr0sinθ0sinθ)  dθE_z(r_0,\theta_0,\phi_0) = \bar{E} \cdot \hat{z} = -iKf \int_0^{\theta_{max}} I_0(\theta)sec^2\left(\frac{\theta}{2}\right) sin^2\theta e^{-iKr_0 cos\theta_0 cos\theta} J_0(Kr_0sin\theta_0sin\theta) \; d\theta
Er(r0,θ0,ϕ0)=Eˉr^=Eˉ(cosϕ0sinϕ00)E_r(r_0,\theta_0,\phi_0) = \bar{E} \cdot \hat{r} = \bar{E} \cdot \begin{pmatrix} cos\phi_0 \\ sin\phi_0 \\ 0 \end{pmatrix}
=Kf20θmaxI0(θ)sec2(θ2)sin(2θ)eiKr0cosθ0cosθJ1(Kr0sinθ0sinθ)  dθ= \frac{Kf}{2} \int_0^{\theta_{max}} I_0(\theta) sec^2\left(\frac{\theta}{2}\right) sin(2\theta) e^{-iKr_0 cos\theta_0 cos\theta} J_1(Kr_0sin\theta_0 sin\theta) \; d\theta
Eϕ(r0,θ0,ϕ0)=Eˉϕ^=Eˉ(sinϕ0cosϕ00)=0E_{\phi}(r_0,\theta_0,\phi_0) = \bar{E} \cdot \hat{\phi} = \bar{E} \cdot \begin{pmatrix} -sin\phi_0 \\ cos\phi_0 \\ 0 \end{pmatrix} = 0

For an angle of incidence α0\alpha \neq 0, we shall use a change of coordinates chosen such that the integrals for Eˉ\bar{E} take the same form [4]:

r0r0(r0,θ,ϕ0)r_0 \mapsto r_0'(r_0,\theta,\phi_0)
ϕ0ϕ0(r0,θ,ϕ0)\phi_0 \mapsto \phi_0'(r_0,\theta,\phi_0)

Such that the integrals for Eˉ\bar{E} take the same form. Additional phase factor[3]: eiKζ(θ,ϕ,α)=eiK(2ftan(θ2)αcosϕ)e^{-iK\zeta(\theta,\phi,\alpha)} = e^{-iK(2f\,tan\left(\frac{\theta}{2}\right)\, \alpha \, cos\phi)}

The function, ζ(θ,ϕ,α)\zeta(\theta,\phi,\alpha) is an aberration function. Thus the exponential term is now:

eiK(sinθ(fαtan(θ2)cosϕsinθr0cosϕ0cosϕr0sinϕ0sinϕ)sinθ0+r0cosθ0cosθ)e^{-iK(sin\theta(f\alpha \frac{tan\left(\frac{\theta}{2}\right)cos\phi}{sin\theta} - r_0 cos\phi_0 cos_\phi - r_0 sin\phi_0 sin\phi)sin\theta_0 + r_0 cos\theta_0 cos\theta)}
=eiK[r0(sinθsinθ0cos(ϕϕ0))+r0cosθ0cosθ]= e^{-iK[r_0'(sin\theta sin\theta_0 cos(\phi - \phi_0'))+r_0 cos\theta_0 cos\theta]}

Recall the well known identity acosϕ+bsinϕ=a2+b2  cos(ϕtan1(ba))a\,cos\phi + b\,sin\phi = \sqrt{a^2 + b^2} \; cos\left(\phi - tan^{-1}\left(\frac{b}{a}\right)\right)

Substituting in values for aa and bb:

a=fαtan(θ2)sinθr0cosϕ0a = \frac{f\,\alpha\,tan\left(\frac{\theta}{2}\right)}{sin\theta} - r_0 cos\phi_0
b=r0sinϕ0b = -r_0 sin\phi_0
r0=a2+b2=f2α2tan2sin2(θ)+r022fαr0cosϕ0tan(θ2)sinθr_0' = \sqrt{a^2 + b^2} = \sqrt{\frac{f^2 \alpha^2 tan^2}{sin^2(\theta)}+r_0^2 - 2f\alpha r_0 cos\phi_0 \frac{tan\left(\frac{\theta}{2}\right)}{sin\theta}}
tan(ϕ0)=r0sinϕ0r0cosϕ0fαtan(θ2)sinθtan(\phi_0') = \frac{r_0 sin\phi_0}{r_0 cos\phi_0 - \frac{f \alpha tan\left(\frac{\theta}{2}\right)}{sin\theta}}
sin(ϕ0)=r0sinϕ0r0sin(\phi_0') = \frac{r_0 sin\phi_0}{r_0'}
cos(ϕ0)=(r0cosϕ0fαtan(θ2)sinθ)r0cos(\phi_0') = \frac{(r_0 cos\phi_0 - \frac{f \alpha tan\left(\frac{\theta}{2}\right)}{sin\theta})}{r_0'}

As before, using the new coordinates:

Eˉ=Kf0θmaxI0(θ)sinθsec2(θ2)cosθeiKr0cosθ0cosθ(J1(Kr0sinθ0sinθ)cosϕ0J1(Kr0sinθ0sinθ)sinϕ0iJ0(Kr0sinθ0sinθ)tanθ)dθ\bar{E} = Kf \int_0^{\theta_{max}} I_0(\theta) sin\theta \, sec^2\left(\frac{\theta}{2}\right) cos\theta e^{-iK r_0' cos\theta_0 cos\theta} \begin{pmatrix} J_1(Kr_0' sin\theta_0 sin\theta)cos\phi_0' \\ J_1(Kr_0' sin\theta_0sin\theta)sin\phi_0' \\ -i J_0(Kr_0' sin\theta_0sin\theta)tan\theta \end{pmatrix} d\theta

We take the intensity distribution, I0(θ)I_0(\theta), to be that of a Bessel-Gauss beam [2]:

I0(θ)=Ne(r(θ)w0)2J1(2r(θ)w0)I_0(\theta) = Ne^{-\left(\frac{r(\theta)}{w_0}\right)^2} J_1\left(\frac{2r(\theta)}{w_0}\right)

References

1. ^ E. Wolf, "Electromagnetic diffraction in optical systems. I. An integral representation of the image field.", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 253, No. 1274, December 15, 1959, Available:

2. ^ M.A. Lieb, A. J. Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy", Optics Express, Vol. 8, Issue 7, pp. 458-474, 2001, Available: https://doi.org/10.1364/OE.8.000458

3. ^ Alexandre April, Pierrick Bilodeau, and Michel Piché, "Focusing a TM01 beam with a slightly tilted parabolic mirror", Optics Express, Vol. 19, Issue 10, pp. 9201-9212, 2011, Available: https://doi.org/10.1364/OE.19.009201

4. ^ Rishi Kant, "An Analytical Solution of Vector Diffraction for Focusing Optical Systems with Seidel Aberrations: I. Spherical Aberration, Curvature of Field, and Distortion", Journal of Modern Optics, November 1993, Available: https://doi.org/10.1080/09500349314552301